Right hereditary affine PI rings are left hereditary

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hereditary Noetherian Prime Rings

In the study of hereditary Noetherian rings, it is clear that hereditary Noetherian prime rings will play a central role (see, for example, [12]). Here we study the (two-sided) ideals of an hereditary Xoetherian prime ring and, as a consequence, ascertain the structure of factor rings and torsion modules. The torsion theory represents a generalization of similar results about Dedekind prime rin...

متن کامل

On n-coherent rings, n-hereditary rings and n-regular rings

We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

متن کامل

Gorenstein hereditary rings with respect to a semidualizing module

‎Let $C$ be a semidualizing module‎. ‎We first investigate the properties of‎ ‎finitely generated $G_C$-projective modules‎. ‎Then‎, ‎relative to $C$‎, ‎we introduce and study the rings over which‎ ‎every submodule of a projective (flat) module is $G_C$-projective (flat)‎, ‎which we call $C$-Gorenstein (semi)hereditary rings‎. ‎It is proved that every $C$-Gorenstein hereditary ring is both cohe...

متن کامل

Hereditary right Jacobson radicals of type-1(e) and 2(e) for right near-rings

Near-rings considered are right near-rings. In this paper two more radicals, the right Jacobson radicals of type-1(e) and 2(e), are introduced for near-rings. It is shown that they are Kurosh-Amitsur radicals (KAradicals) in the class of all near-rings and are ideal-hereditary radicals in the class of all zero-symmetric near-rings. Different kinds of examples are also presented.

متن کامل

On Projective Modules over Semi-hereditary Rings

This theorem, already known for finitely generated projective modules[l, I, Proposition 6.1], has been recently proved for arbitrary projective modules over commutative semi-hereditary rings by I. Kaplansky [2], who raised the problem of extending it to the noncommutative case. We recall two results due to Kaplansky: Any projective module (over an arbitrary ring) is a direct sum of countably ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1988

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500007096